Цисплатин є одним з найбільш загальновживаних препаратів у лікуванні солідних пухлин людини. Однак ефективне застосування цисплатина у клініці часто лімітується токсичністю препарату та розв">
Неділя, 22.12.2024, 12:47
Реферати UA
Головна | Каталог рефератів | Регистрация | Вхід
Меню сайту
Категорії каталогу
Українська література [31]
Українська мова [19]
Інформатика, інформаційні технології [72]
Математика [6]
Історія України [25]
Біологія [27]
Екологія [21]
Медицина, БЖД [22]
Хімія [14]
Зарубіжна література [18]
Менеджмент [12]
Правознавство [39]
Економіка [46]
Банківська справа [45]
Психологія [23]
Маркетинг [15]
Релігієзнавство [1]
Філософія [17]
Фізика [11]
Географія [4]
Туризм [13]
Архітектура [9]
Реклама [3]
Журналістика [3]
Фінанси [2]
Алгебра [0]
Геометрія [1]
Природознавство [0]
Всесвітня Історія [2]
Дизайн [1]
Культура та мистецтво [1]
Реклама
Головна » Реферати » Реферати Українською » Медицина, БЖД

Лікування пухлин людини

[ Загрузити з сервера (38.2 Kb) ] 06.02.2012, 13:37

Цисплатин є одним з найбільш загальновживаних препаратів у лікуванні солідних пухлин людини. Однак ефективне застосування цисплатина у клініці часто лімітується токсичністю препарату та розвитком резистенстності до нього. Резистентність до цисплатина має комплексний характер і пов`язана з рядом особливостей пухлинних клітин, включаючи зміни в проникності цитоплазматичної мембрани, підвищення активності детоксикуючих та репаративних систем клітини, порушення експресії генів fos, nm23, p53, mdm2, bcl-2 та інші. Порушення біохімічних сигнальних шляхів апоптозу також можуть бути основою для розвитку резистентності. Розуміння молекулярних основ дії цисплатина та механізмів розвитку резистентності до нього дозволять значно покращити результати клінічних випробувань препарату.
Транспорт цисплатина

Взаємодія цисплатина з плазматичною мембраною є першою щаблею багатостадійного процесу реалізації цитотоксичного ефекту препарату. Ступінь пошкодження мембран цитостатиком залежить від текучості їх ліпідної компоненти, яка визначається швидкістю проходження процесів перекисного окислення ліпідів [1].
На сьогодні існують дві гіпотези поглинання препарату пухлинною клітиною. Більш аргументована гіпотеза пасивного транспорту, основана на фактах відсутності інгібування переносу цисплатина за допомогою його структурних аналогів та проникнення цисплатина в клітину без насичення до межі його розчинності у культуральному середовищі [2]. Але ряд вчених відстоює ідею існування активного транспортера цисплатина. У 1984 році був відкритий інгібітор синтезу протеінів бензальдегід, який послаблював цитотоксичний ефект цисплатина за рахунок зменшення його накопичення в клітині. Інший відомий інгібітор білкового синтезу – циклогексамід не мав такого ефекту. Це й стало основою для заключення, що бензальдегід якимось чином безпосередньо реагує з мембранним білком-транспортером, уповільнюючи таким чином проникнення цисплатина у клітину [3].
Піздніше було знайдено, що альдегідні похідні пиридоксаль та пиридоксаль-5-фосфат також значно послаблюють цитотоксичну активність цисплатина. Відомо, що ці речовини утворюють основи Шиффа з аміногрупами на поверхні клітини. Було показано, що і бензальдегід і інші похідні інгібують проникнення цисплатина у клітину на 50% у порівнянні з контролем. Є дані про те, що попередня інкубація клітин з інгібітором Nа/К АТФ-ази уабаіном також зменшує проникнення цисплатина у клітину на 50%. Подальші дослідження у цьому напрямку показали, що безпосередньо Nа/К АТФ-аза не є транспортером цисплатина, однак транспорт ліків Na-залежний, а також залежить від мембранного потенціалу клітини [4,5].
Розглянемо загальновживану модель акумулювання цисплатина в клітині, яка влаштовує прибічників обох гіпотез. Швидке накопичення половини цисплатина у клітині проходить за рахунок пасивної дифузії, тоді як інша половина транспортується через канали, що закриваються. Якщо активність останніх заблоковано, то можна очикувати зменшення проникнення цисплатина в клітину на 50%. Дані про регуляцію активності каналів дозволяють зробити висновок, що проходження цисплатина через них регулюється каскадом реакцій фосфорилювання, що ініціюються протеінкіназою А (РКА), протеінкіназою С (РКС) чи кальмодулінзалежними кіназами [3]. Здатність мембранонепроникних альдегідних похідних блокувати накопичення цисплатина у клітині на 50% обумовлюється реактивністю зовнішніх аміногруп білків, що формують такий канал. Той факт, що інгібування початкового потоку цисплатина у клітину на 50% відбувається за допомогою уабаіна, підтверджує, що повний мембранний градієнт, зумовлений Na/K АТФ-азою, важливий для роботи каналів.
Bиведення цисплатина з клітини – двохфазний процес з дуже короткою почaтковою фазою тривалістю 5 хв та більш довгою кінцевою фазою [6,7]. Встановлено існування АТФ-залежного переносника цисплатина кон`югованого з глутатіоном [8,9]. Описана АТФ-залежна глутатіон-S-кон`югат експортуюча помпа (ГS-Х-помпа) , що має широкий спектр субстратної специфічності та транспортує органічні аніони, лейкотрієн С4 та інші сполуки, що несуть великі гідрофобні ділянки та хоча б два від`ємні заряди. ГS-Х-помпа виводить потенційно токсичні кон`югати глутатіон-S-платина (ГS-Pt) з пухлинних клітин, таким чином беручи участь в формуванні резистентності клітин до цисплатина [10].

2.Внутрішньоклітинна мішень цисплатина.

Внутрішньоклітинною мішенню цисплатина є ДНК, з якою препарат ковалентно зв`язується. Біфункціональні продукти взаємодії цисплатина з ДНК, що називаються цисплатин-ДНК-адукти, блокують реплікацію, транскрипцію і, як наслідок, - клітинну проліферацію. Цисплатин діє на 7-му позицію залишка гуаніна та формує декілька типів адуктів з основами ДНК. Два основні адукти це G-G внутрішньоланцюгові зшивки (складають 60-65% усіх адуктів), A-G внутрішньоланцюгові зшивки ( 20-25% усіх адуктів), а також міжланцюгові та ДНК-білкові зшивки [11]. Після дії цисплатина основна кількість адуктів утворюються вже через 6-12 годин [12]. Формування адуктів відбувається в два етапи. Спочатку має місце швидкий етап алкілування: один ланцюг ДНК формує цисплатин-моноадукт. Далі повільна фаза: реакція з`єднання з другим ланцюгом.
Більшість робіт у напрямку дослідження взаємодії цисплатина та ДНК стосується ядерної ДНК. Але в останні роки вчених зацікавила у цьому відношенні мітохондріальна ДНК. Виявилось, що ця ДНК у 4-50 разів (для різних модельних систем) більш чутлива до пошкоджуючого ефекту цисплатина, ніж ядерна ДНК [13,14]. А у зв`язку з сучасними уявленнями про роль мітохондрій у реалізації програми апоптозу цей факт набуває нового значення.

3.Вплив цисплатина на клітинний цикл та індукція апоптозу.

Відомо, що у багатьох модельних системах in vitro цисплатин не э фазоспецифічним протипухлинним препаратом. Пухлинні клітини у різних фазах клітинного циклу однаково чутливі до нього [15]. Але дані деяких досліджень свідчать про те, що все таки у фазі G2/M клітини є більш чутливими до дії цитостатика [16]. Низькі концентрації цисплатина у клітинах викликають уповільнене проходження S-фази і зупинку у G2/M-фазі клітинного циклу [17]. В залежності від концентрації препарату і, відповідно, пошкодження ДНК, клітина після G2/M-зупинки вступає в наступну фазу клітинного циклу – мітоз, або входить в апоптоз. Щодо дії цитостатика на регулятори клітинного циклу, то встановлено, що цисплатин не впливає на внутрішньоклітинний вміст цикліну А [18]. Але при дії препарату збільшуються рівні цикліну В, p34cdc2 а також зростає активність гістон Н1-кінази [19]. Після дії цисплатина підвищується експресія цикліну D1, cdk4, а також збільшується рівень фосфорилювання білка ретинобластоми, тобто з`являються усі ознаки руху клітини по клітинному циклу [20]. І дійсно, якщо обробляти цисплатином клітини, що знаходяться у стані спокою (G0), вони виходять у G1-фазу, повільно проходять S-фазу і зупиняються у G2/M-фазі клітинного циклу.
Після пошкодження ДНК цисплатином у клітинах відбувається збільшення експресії білка Р53 і Р53-залежне підвищення експресії білка р 21, який і спричиняє зупинку клітинного циклу [21].
Субтокичні дози цисплатина індукують загибель клітин за типом апоптозу, з усіма характерними біохімічними та морфологічними ознаками процесу: екстерналізацією фосфотидилсерину, активацією каспаз, фрагментацією ДНК, утворенням апоптичних тілець [22-24].
В багатьох модельних системах in vitro показано, що лікарські протипухлинні препарати, в тому числі і цисплатин, викликають підвищення експресії поверхневого рецептора Fas, що потребує синтезу білка de novo [25], а також його ліганда FasL [26]. Але на сьогодні вважається, що індукований проитипухлинними ліками апоптоз не є залежним від активації безпосередньо Fas-системи, оскільки вживання антагоністичних анти-CD95 моноклональних антитіл не впливало на розвиток апоптозу під дією цитостатиків [27].
Особливо цікавими є дані щодо ефекторних механізмів апоптозу, індукованого цисплатином. Відомо, що у цьому процесі бере участь каспаза-3, оскільки застосування її інгібіторів білка CrmA та Z-VAD-CH2DCB призводить до гальмування апоптозу, спричиненого цитостатиком [28,29]. Каспаза-3 активує інші каспази, крім того розщіпляє фактор ініціації трансляції 4G (eIF4G), що призводить до гальмування синтезу білка [30].

4.Механізми резистентності пухлинних клітин до цисплатина.
4.1.Механізми клітинної резистентності на рівні цитоплазматичної мембрани

Одним з основних механізмів клітинної резистентності до цисплатина розглядають особливості будови цитоплазматичної мембрани та прямого та зворотнього транспорту крізь неї.
Однією з особливостей пухлинних клітин, резистентних до дії цисплатина, є зменшена у порівнянні з чутливими клітинами акумуляція препарату [31,32].
Дана модель пояснює, чому так багато клітинних ліній резистентних до дії цисплатина відрізняються зменшеним накопиченням цисплатина. Мутації, що призводять до змін структури каналів чи гіперполяризації клітинної мембрани, можуть спричинити виникнення резистентного клона клітин.
Нещодавно до клітин мишиної лімфоми R1.1, резистентних до дії цисплатина були одержані антитіла, які реагували з глікопротеідом з молекулярною масою 200кД, гіперекспресованим на поверхні цих клітин. Кількість білка на клітинній поверхні знаходилась у зворотній залежності від акумулювання цисплатина у клітинах та корелювала з рівнем їх чутливості до цисплатина. Було запропоновано, що даний білок може бути аналогом Р-глікопротеіда (Pgp) і є непрацездатним каналом, що гіперекспресований на клітинній поверхні для компенсації дефектної функції [33].
В резистентних до цисплатина клітинах з підвищеним вмістом глутатіона часто спостерігається гіперекспресія ГS-Х-помпи. В цитоплазматичних везикулах таких клітин знаходиться більше кон`югатів ГS-Pt, ніж в чутливих клітинах [34]. Така внутрішньоклітинна компартменталізація ліків та продуктів їх метаболизму також вважається одним з механізмів лікарської резистентності. В багатьох випадках резистентні пухлинні клітини відрізняються розвинутою везикулярною сіткою, що дозволяє їм просторово нейтралізувати токсини та виводити їх шляхом екзоцитозу.
В експериментах з використанням бутионінсульфоксиміна (BSO), інгібітора синтезу глутатіона, було показано, що при витощенні внутрішньоклітинного глутатіона активність ГS-Х-помпи лише трохи зменшується [35]. Таким чином, ефективність транспорту ГS-Pt-кон`югатів визначається не тільки концентрацією останніх, а й експресією переносника.
Останнім часом з`явилися роботи, що засвідчують, що білок, асоційований з загальною лікарською резистентністю (MRP але не Pgp) може функціонувати як ГS-Х-помпа [36,37]. Ця гіпотеза підтверджується такими фактами: 1) клітини, що гіперекспресують MRP секретують у культуральне середовище більше глутатіона; 2) витощення внутрішньоклітинного глутатіона за допомогою BSO запобігає виведенню ліків з клітин за допомогою MRP; 3) гіперекспресія MRP відповідає підсиленому АТФ-залежному транспорту кон`югатів ГS-Х; 4) антитіла до MRP реагують з білком з молекулярною масою 190 кД, який може зв`язуватись з ГS-кон`югатами та лейкотрієном С4.
Таким чином, видалення з клітин комплексів глутатіон-S-платина переносниками з активністю ГS-Х-помпи є важливим механізмом резистентності, завдяки якому внутрішньоклітинна концентрація препарату підтримується на низькому рівні, що сприяє зменшенню його пошкоджуючого ефекту.

4.2.Внутрішньоклітинні тіолові детоксикуючі системи
4.2.1. Система глутатіона

Глутатіон та ферменти його метаболізму є важливими елементами меxанізму резистентності клітин до алкілуючих агентів, в тому числі сполук платини.
Більшість клітинних ліній, резистентних до дії цисплатина відрізняються підвищеним вмістом внутрішньоклітинного глутатіона та/чи гіпреактивністю фермента, що ініціює синтез глутатіона -глутамілцистеінсинтетази (-ГЦС) [38-40]. Однак описані приклади стійких до дії цисплатина клітинних ліній з нормальним [41,42] та зниженим [43] у порівнянні з чутливими лініями вмістом глутатіона.
Сучасні стереоскопічні та спректроскопічні методи дозволили визначити, що глутатіон та цисплатин реагують безпосередньо у безклітинній системі в молярному співвідношенні 2/1, утворюючи хелатний комплекс диглутатіонплатини. Після 12 годин інкубації клітин в середовищі з цисплатином концентрація ГS-Pt-кон`югатів стає максимальною. При цьому 60% внутрішньоклітинної платини знаходиться у зв`язаному стані [10].
Заслуговують на увагу дані, отримані в експериментах з використанням інгібітора синтезу глутатіона бутіонінсульфоксиміна (BSO). Обробка BSO клітинних ліній раку шлунка людини MKN-28 та MKN-45 , раку яєчника КК та МН, аденокарциноми ротової порожнини КВ призводить до сенсибілізації клітин до дії цисплатина [44,45]. Причому витощення внутрішньоклітинного глутатіона за допомогою BSO не впливало на акумулювання цисплатина в клітинах а також формування кон`югатів GSH-Pt [46].
При вивчeнні взаємодії ферментів метаболізму глутатіона та їх ролі в механізмах резистентності велике значення мають експерименти з використанням культур клітин, трансфекованих генами відповідних ензимів. Наприклад, клітини раку легенів людини, трансфековані геном фермента -ГЦС, мають у 2 рази більше глутатіона, в 1,6 рази підвищену активність ГS-Х-помпи та в 1,5 рази меньшу акумуляцію цисплатина, в 6,7 рази більшу резистентність до цисплатина у порівнянні з батьківською клітинною лінією. Витощення внутрішньоклітинного глутатіона в трансфектах за допомогою BSO не впливало на резистентність до цисплатина. У таких випадках зберіглась висока активність ГS-X-помпи і тому внутрішньоклітинна концентрація платини не змінилася. Таким чином, в даній клітинній системі резистентність обумовлена посиленим видаленням ГS-Pt-конюгатів за допомогою ГS-Х-помпи, що не загубила своєї активності навіть при витощенні субстрата (глутатіона) [47].
В той же час не винайдено ніякого зв`язку між рівнем експресії глутатіонредуктази та глутатіонпероксидази та ступенем стійкості клітин до дії цисплатина [48,49].


4.2.2.Металотеонеіни

Особлива роль у формуванні резистентності відводиться металотеонеінам.
Оскільки у вільному стані ці сполуки нуклеофільні, металотеонеіни зв`язуються з електрофільними протипухлинними препаратами типу цисплатина, а також мелфаланом та деякими антибіотиками: адріаміцином, блеоміцином та доксорубіцином.
Клітини, що гіперексперсують металотеонеіни, часто резистентні до дії цисплатина [50,51]. Однак металотеонеін не є обов`язковим компонентом резистентності до цього препарату, оскільки зустрічаються резистентні до цисплатина клітинні лінії, в яких металотеонеін не виявляється [43].
При обробці цисплатином резистентних до препарата клітин з підвищеним вмістом металотеонеіна 70% внутрішньоклітинної платини знаходять у зв`язаному з білком стані.
Досліди по трансфекції гена металотеонеіна ІІа показали, що клітини-трансфекти набувають резистентності до цисплатина, хлорамбуцила та мелфалана [52].
Добре виражена експресія металотеонеіна в пухлинах може мати прогностичне значення. Наприклад, при лікування хворих на рак стравоходу за допомогою цисплатина 5-річна життєздатність пацієнтів з металотеонеін-від`ємними пухлинами становить 56%, а пацієнтів з металотеонеін-позитивними пухлинами – 26% [53].
З наведених вище даних можна заключити, що у випадках підвищеної експресії металотеонеін є важливою складовою резистентності до цисплатина.

4.3.Репарація пошкоджень ДНК.

Резистентність клітин до дії цисплатина може залежати від стану системи репарації пошкоджень ДНК.
Один з механізмів резистентності клітин до цисплатину – прискорена репарація цисплатин-ДНК-адуктів [54]. Чутливі до дії цисплатина клітинні лінії відрізняються зниженою здатністю ліквідувати основні адукти ДНК та цисплатина (GG-Pt та GA-Pt), а також послабленою активністю ДНК-полімераз [55,56]. Обробка резистентних до цисплатина клітин афідикоіном – інгібітором ДНК-полімераз  та  повертає чутливість до цисплатина, що стверджує роль репарації адуктів цисплатин-ДНК у формуванні резистентності [57].
На сьогодні мало відомо, щодо ліквідації продуктів платинування ДНК у мітохондріях. Вважають, що мітохондріальна ендонуклеаза G (Endo G) може брати участь у репаративних процесах цих органел [58].
Нещодавно з культуральної рідини пухлинних клітин та біопсійного матеріалу пухлин людини були виділені білки HMG (high-mobility group) та їм подібні, які зв`язуються з ДНК, що пошкоджена цисплатином, але не трансплатином чи ультрафіолетовим випроміненням [59,60]. Ці білки – висококонсервативні, локалізуються у цитоплазмі та ядрі клітини. Їх біологічна роль ще точно не встановлена. Інтенсивність зв`язування ДНК з цисплатином та HMG-подібними білками прямо пропорційна ступеню пошкодження ДНК. ДНК резистентних клітин зв`язується з цими білками більш ефективно. HMG-білки взаємодіють з платинованою ДНК, закривають пошкоджені сайти від ферментів ексцизійної репарації. Припускають, що зв`язування HMG-подібних білків з пошкодженою ДНК може викликати зупинку реплікації чи транскрипції, а також впливати на роботу систем контролю клітинного циклу при руйнуванні ДНК.
Відомо, що такі дефекти системи репарації невідповідностей (mismatch repair), як недостатня експресія білків hMSH2 чи hMLH-1, призводять до виникнення резистентності до цисплатина [61,62]. MSH2-білок сам по собі чи разом з білком GTBP/p160 розпізнає невеликі зміни у ланцюгу ДНК, наприклад, продукти платинування ДНК, і зв`язується з ними.
Априорі можна було б припустити, що відсутність якої-небудь частини системи репарації ДНК сприяє розвитку гіперчутливості до дії цисплатина, що відбувається у клітинах, дефектних за системою ексцизійної репарації. Але у випадку порушення функції системи mismatch repair клітина набуває резистентності до цисплатина. Цей феномен можна розглядати з двох позицій. По-перше, порушення системи mismatch repair може бути наслідком індукованого цисплатином випадкового мутагенезу, що в результаті обумовлює стійкість до дії цисплатина. По-друге, саме дефект у роботі цієї системи репарації може покласти початок резистентності [63,64].
Комплекс білків репарації “розпізнає” адукти у ланцюгу-шаблоні ДНК та намагається виправити ланцюг, що синтезується [65]. Так, поки існує адукт у ланцюгу-шаблоні, а підбір нових основ не ліквідує невідповідність, що існує, генерується сигнал, який запускає програму апоптозу. Якщо система mismatch repair не працює, такий сигнал не генерується, клітини стають толерантними до адуктів цисплатин-ДНК та набувають резистентного фенотипу.
У випадку порушення системи ексцизійної репарації спостерігається протилежний ефект. Клітини, дефектні по системі ексцизійної репарації значно більш чутливі до дії цисплатина, ніж нормальні клітини [66].
Показано, що цисплатин індукує експресію важливого для ексцизійної репарації гена ERCC-1. Але до активації гена ERCC-1 відбувається активації генів c-fos та c-jun, а також фосфорилювання білка c-Jun [67].
Нещодавно був відкритий новий ген BRCA1, повязаний з репарацією пошкодженої ДНК. Показано, що гіперекспресія цього гена в клітинах рака яєчника та молочної залози асоційована з резистентністю до дії цисплатина [68].
Топоізомерази І та ІІ, що релаксують спіралі ДНК, є важливими ферментами реплікації, транскрипції та рекомбінації. Вони відіграють суттєву роль у процесах усунення адуктів ДНК-цисплатин. У багатьох резистентних до дії цисплатина клітинах спостерігається підвищена активність топоізомерази ІІ [69]. Інгібітори топоізомераз І та ІІ: етопозид, камтотецин, СРТ-11, SN-38, новобіоцин – викликають сенсибілізацію резистентних клітин до дії цисплатина [70-72].
Ще одним механізмом резистентності до цисплатина на рівні ДНК може бути підвищена концентрація в клітині вільних нуклеотидів (наприклад, АТФ, АДФ), які конкурують з ДНК за зв`язування з цисплатином [73]. Таким чином, вільні нуклеотиди, концентрація яких у цитоплазмі відрізняється в різних клітинах, можуть значно впливати на чутливість пухлин до цисплатина.
Важливо також розглянути утворення зшивок ДНК-білок під дією цисплатина. Хоча кількість цих адуктів набагато менше, ніж у разі між- та внутри- ланцюгових зшивок, але відмічено, що вони також відповідальні за цитотоксичний ефект цисплатина. Наприклад, було показано, що одна резистентна до дії цисплатина клітинна лінія раку яєчника утримувала у 6 разів менше цитокератина 18, ніж чутлива лінія. Трансфекція кДНК цитокератина 18 в клітини резистентної лінії давала клони з підвищеним рівнем цього білка та у більшості випадків з чутливим фенотипом. При цьому було встановлено, що після обробки цисплатином, з ДНК у клітинах зв`язуються негістонові білки. Пізніше ці білки було ідентифіковано як цитокератини [74]. Можливо, що формування зшивок цитокератин-ДНК, асоціюється з цитотоксичністю цисплатина. Тоді зменшення продукції цитокератина 18 у резистентних клітинах веде до зменшення кількості зшивок білок-ДНК та, як наслідок, зниження чутливості до цисплатина.
Виходячи з вищенаведеного, можна заключити, що резистентність до дії цисплатина на рівні ДНК обумовлена підвищеною активністю систем репарації клітини чи її толерантністю до існуючих ДНК-Pt-адуктів.

4.4.Зміни генома, що асоційовані з резистентністю до цисплатина.

Оскільки клітинна резистентність є стійко спадковою ознакою в ряду поколінь, можна зробити висновок, що стійкість до дії цисплатина визначається генетичними особливостями клітини.
Встановлено, що основна роль в цьому феномені належить 11-й та 16-й хромосомам у людини [75]. На клітинних гібридах з різним хромосомним складом було показано, що обовязковою умовою резистентного фенотипа є наявність 16-ї хромосоми з резистентних клітин та 11-ї хромосоми з чутливих клітин. При цьому основну роль грає 16-та хромосома, а 11-та хромосома необхідна для її нормального функціонування. Ці хромосоми залучені у різні боки резистентності. На 16-тій хромосомі присутні гени MRP (multidrug resistance associated protein), LRP (lung resistance protein), гени додаткового білка ексцизійної репарації-4, металотеонеіна. На 11-їй хромосомі розташовані гени, що кодують глутатіон трансферазу (ГSТ-), а також протеін, що розпізнає специфічні послідовності пошкодженої ДНК.
Чутливість пухлинних клітин до дії цисплатина може залежати від функціональної активності генів р 53 та генів родини bcl.
На сьогодні все ще залишається відкритим питання про зв`язок лікарської резистентності з р 53-статусом клітин. Невизначеність тут існує тому, що роль білка Р 53 у хемочутливості клітин до лікарської терапії розглядають з двох протилежних точок зору: 1) експресія білка Р 53 дикого типу (wt p 53) збільшує чутливість до хіміотерапії шляхом прискорення входження клітин в апоптоз; 2) білок wt P 53 зменшує хемочутливість, оскільки після пошкодження ДНК обумовлює зупинку росту для репарації ДНК [76].
Відомо, що після дії цисплатина у чутливих клітинах збільшується рівень експресії гена р 53 та відповідно – білка Р 53. Р 53 індукує експресію білка р 21/WAF1/CIP1-інгібітора циклін залежних кіназ, що грає важливу роль у зупинці клітинного циклу у G1-фазі після генотоксичного стресу [77,78]. Під час цієї зупинки клітиною приймається “рішення”: репарувати ДНК чи входити в апоптоз, в залежності від глибини пошкодження. На сьогодні ще невідомі усі біохімічні подробиці того, як активація р 53 ініціює апоптоз.
Більшість робіт по вивченню функціональної активності Р 53 у резистентних до дії цисплатина клітинах засвідчують, що мутації гена р 53 призводять до розвитку резистентності до хіміотерапії [79-82]. Показано, що в резистентних клітинах часто порушена внутрішньоклітинна локалізація білка Р 53 [83] а також не відбувається індукція експресії Р 53 та р 21 цисплатином [84,85]. Досліди по трансфекції гена р 53 також довели, що перенос у дефектні за функцією Р 53 чи null-клітини wt p53-гена обумовлює збільшення чутливості до лікарських препаратів, а трансфекція мутантного гена mut p 53 спричиняє розвиток резистентності [86].
Досліджено, що в клітині після дії цисплатина разом з р 53 індукується експресія гена mdm 2. Продукт даного гена відрізняється властивістю утворювати комплекси з білком Р 53 , таким чином дезактивуючи частину внутрішньоклітинного Р 53. В резистентних до цисплатина клітинах іноді спостерігається гіперекспресія гена mdm 2 [87] а використання антисмислових (проти mdm 2) нуклеотидів у такій системі призводить до збільшення чутливості до лікарської терапії [88].
Таким чином, функція Р 53 може бути інактивована двома шляхами: мутаціями безпосередньо гена р 53 а також підвищеним комплексоутворенням Р 53 з MDM 2.
Але дані деяких досліджень заперечують, що мутації р 53 обов`язково спричиняють розвиток лікарської резистентності. Feudis з співавторами показали, наприклад, на 9 клітинних лініях раку яєчника з різним р 53- статусом, що в цих клітинних лініях після обробки цисплатином рівень експерсії р 21 підвищується однаковo і немає різниці у чутливості до апоптозу, індукованого дією препарата [89,90].
Однак відомо, що більш половини злоякісних новоутворень людини відрізняються мутаціями р 53, i ця ознака є важливим показником чутливості пухлин до хіміотерапії [91]. У клінічних дослідженнях показано, що рівень експресії р 53 у зразках біопсійного матеріала при раку шлунка та яєчників може бути важливим прогностичним показником захворювання [92]. Досліджено, що Р 53-позитивний фенотип пухлин асоціюється з поганим прогнозом [93,94]. Це пояснюється тим, що мутантна форма білка має подовшений час напівжиття і тому легше виявляється імуногістохімічно.
Білки родини Bcl (Bcl-2, Bcl-Xl, Bcl-Xs, Bax та інші) грають важливу роль у регуляції процесу апоптоза. Деякі з них (Bcl-Xl, Bcl-2) гальмують розвиток апоптоза, тоді як інші (Bcl-Xs, Bax, Bak) – навпаки є промоторами цього процесу. Відомо, що білки даної родини здатні гетеродимеризуватись, утворюючи умовний “реостат”, який регулює функціональну активність білків [95]. Досліджено, що білки Bcl-2 та Bcl-Xl гіперекспресовані при багатьох неопластичних захворюваннях людини. Причому така гіпрекспресія асоційована з резистентністю пухлинних клітин in vitro до протипухлинних препаратів [96]. Така стійкість клітин пов`язана з порушенням механізмів індукції апоптозу у відповідь на лікарську терапію. У дослідах з використанням клітин траксфекованих генами bcl-2 чи bcl-xl було показано, що трансфекти набувають резистентний фенотип до цілого ряду лікарськиї препаратів включаючи цисплатин [97,98]. У таких модельних клітинах була значно зменшена деградація ДНК після обробки цисплатином. Якщо порівнювати внесок продуктів генів bcl-2 та bcl-xl у антиапоптозному ефекті, то показано, що білок Bcl-Xl має більший вплив [99].
Після обробки цисплатином у чутливих клітинах, що входять в апоптоз, не змінюється рівень експресії білків Bcl-2, Bcl-Xl та Bax (24kDa), але підвищується рівень білків Bak та Bax (21 kDa), тобто білків-агоністів апоптозау [100-102]. Відомо, що в деяких резистентних до цисплатина клітинних лініях спостерігається знижений рівень експресії Bax [103], а трансфекція гена bax спричиняє підвищення чутливості до хіміотерапії [104]. А от клітини з підвищеною експресією Bak відрізняються більшою чутливістю до дії цисплатина [105].
Відомо, що білок Bcl-2 часто гіперекспресований у пухлинах людини. Причиною такої гіперекспресії вважають часті ділеції великих нетрансльованих послідовностей з 3 та 5 – кінців гену bcl-2 (78-А). Дещо суперечливі дані імуногістохімічних досліджень експресії білків родини Bcl у зразках біопсійного матеріалу та прогнозування чутливості до лікарської терапії у порівнянні з дослідженнями in vivo. Наприклад, одні дослідники повідомляють, що Вcl-2-позитивні неоплазії мають слабку відповідь на хіміотерапію та поганий прогноз [106,107], інші – навпаки, спостерігають, що експресія Вcl-2 у пухлинах асоціюється з покращеним виживанням [108]. Експресія Вax окремо не має ніякого прогностичного значення [109].
Роботи, зроблені з використанням резистентних до дії цисплатина лініях клітин показали важливість онкогена fos в резистентності до цього препарату. В резистентних лініях клітин спостерігали підвищений рівень експресії гена fos. Були визначені дві важливі функції Fos-білка: транскрипційна активація синтеза ДНК та участь у клітнинній проліферації. Fos-білок контролює клітинну відповідь на пошкодження ДНК цисплатином через активацію генів топоізомерази І, полімерази  та металотеонеіна [2].
Повідомляється про те, що гіперекспресія супресорного гена nm 23 супроводжується, як правило, збільшенням чутливості до дії цисплатина. Дані результати отримано з досліджень in vitro на клітинних лініях карциноми молочної залози людини MDA-MB-435, лінії карциноми яєчника OKAR-3 та лінії меланоми К-1735-ТК, а також при дослідженні клінічного матеріалу пухлин молочної залози. У всіх досліджуваних системах гіперекспресія nm 23 призвела до формування у клітинах великої кількості міжланцюгових зшивок ДНК та збільшення чутливості до цисплатина [110].
Цікавими є дані по переносу резисткнтного до цисплатина фенотипу при трансфекції генів v-src. Непухлинні епітеліальні клітини людини HAG-1 після трансфекції гену v-src набували неопластичного фенотипу та резистентності до цисплатина. У трансформованих клітинах спостерігали значне зменьшення формування міжланцюгових зшивок ДНК з їх послідовним швидким видаленням. Після обробки даних клітин інгібіторами src-кіназ знижувався рівень резистентності до цисплатина. Результати цієї роботи вказують на можливість участі продукту гена v-src в індукції резитентності до цисплатина шляхом модуляції деяких шляхів репарації ДНК [111].
Ампліфікація гена сорцина (кальцій-звязуючого білка з молекулярною масою 19-22кД) в деяких модельних системах асоціювалася з резистентним фенотипом [112]. Важко зараз сказати, чи є резистентність пов`язаною саме з сорцином чи разом з геном сорцина у клітинах ампліфіковані і інші, більш важливі для розвитку резистентності гени.
Таким чином резистентність до цисплатина має комплексний характер і пов`язана з рядом особливостей клітин на рівні цитоплазматичної мемрани, внутрішньоклітинних систем детоксикації, систем репарації та порушення функціональної активності генів p 53, bcl-2, fos, mdm 2, nm23та інших
Категорія: Медицина, БЖД | Тип: Реферат | Добавив: valkyrja
Переглядів: 1961 | Загрузок: 518 | Рейтинг: 0.0/0 |
Реферат вартий уваги? Поділись з друзями


Всього коментарів: 0
Добавляти коментарі можуть тільки зареєстровані користувачі.
[ Реєстрація | Вхід ]
Форма авторизації

Поповнення рахунку
Пошук
Новини
Привітання з 8 березня
Юрій Башмет відкрив свою музичну академію у Львові
Омолоджуючі креми не омолоджують
У Рівному завершився Молодіжний інноваційний форум
В Африці знайдено новий вид невеликих ікластих динозаврів
3 жовтня об 11:00 відбудеться урочисте відкриття виставки "Освіта Слобожанщини - 2012"
У Кам’янець-Подільському національному університеті відбудеться конференція "Наукові досягнення студентів"
Міносвіти України: соціально захищені статті видатків держбюджету на освіту профінансовано на 100%
Центр освітніх програм за кордоном "А-пріорі" проводить консультації з навчання в Канаді та США
М.Азаров привітав вчителів і пообіцяв їм вирішення житлових проблем
Ми у соц-мережах

Це корисно
Статистика
Copyright Kristy © 2024 Конструктор сайтів - uCoz